
Cold planar horizons are floppy

Cold planar horizons are floppy

Jorge E. Santos
New frontiers in dynamical gravity

In collaboration with
Sean A. Hartnoll - arXiv:1402.0872 and arXiv:1403.4612

1 / 15



Cold planar horizons are floppy

Motivation

The AdS/CFT correspondence maps asymptotically AdS solutions of
Einsteins’ equations to states of a dual conformal field theory.

Near horizon geometries of AdS black holes describe the low energy
dissipative dynamics of strongly interacting QFTs.

Near horizon geometries of extremal planar black holes capture the
dissipative dynamics of novel phases of T = 0 quantum matter.

Extensive classification exists for translational invariant systems.

A more realistic model needs to account for a ubiquitous property of
CMT systems:

What this talk is not:

∂x is broken explicitly in all matter sectors.

For other setups recall Jerome’s talk.

What I am going to describe doesn’t happen in such setups.
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Cold planar horizons are floppy

The Einstein-Maxwell system

The bulk theory we study is governed by the Lagrangian

S =
1

16πGd

∫
ddx
√
−g
[
R+

(d− 1)(d− 2)

L2
− 1

2
F abFab

]
,

where F = dA and L is the AdSd length scale.

Comments:

Field content: gravity and Maxwell field

Consider solutions in the Poincaré patch with fixed boundary
metric

ds2
∂ = −dt2 + dx2 + dw2

Translational invariance is explicitly broken via the boundary
behaviour of At:

At(x,w, y) = µ(x,w) + 〈ρ(x,w)〉 y + . . .

Focus on d = 4, with µ(x) = µ̄ [1 +A0 cos(kLx)].

Moduli space space of solutions is 2D: A0 and k0 ≡ kL/µ̄.
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Breakdown of Perturbation theory

An infamous solution:

Study time independent perturbations of extremal RN:

ds2 =
L2

y2

[
−G(y)(1− y)2dt2 +

dy2

G(y)(1− y)2
+ dx2 + dw2

]
,

A = L
√

6 (1− y)dt ,
(1)

with G(y) = 1 + 2y + 3y2 and δAt(0, x) = L
√

6A0 cos(kLx).

Possible to do analytically, but not illuminating.

Instead, take near horizon limit:

t = τ/ε , y = 1− ερ/6 with ε→ 0.

Brings line element (1) to

ds2 = L2

[
1

6

(
−ρ2dτ2 +

dρ2

ρ2

)
+ dx2 + dw2

]
,

A =
Lρ√

6
dτ .
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Breakdown of Perturbation theory

Dream:

Study finite size time independent perturbations about pure
AdS2 × R2 - if a breakdown occurs, likely to be universal, since it

only depends on near horizon geometry.

Start with AdS2 × R2 written in Poincaré-like coordinates

ds2 =

(
−2dτ2 +

d2

2

)
+ L2dx2 + L2dw2 and A = dτ

where L2 ≡ L/
√

6, and ρ = 0 is the horizon location.

Solve for the Kodama-Ishibashi variable:

Third order Kodama-Ishibashi variable grows faster than first order:

Φ
(3)
− (ρ, x) = . . .+ β̃(ν−) δL2 ρ

ν−(kL) log ρ cos(kLx) + . . .

Breakdown of perturbation theory - resumm perturbation theory.
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Breakdown of Perturbation theory

A tale of two resummations:

Preserving AdS2 × R2:

Promote ν− to be a function of γ̃2, in such a way that the
expansion cancels the log.

Similar to the construction of Geons where ω is promoted to
be a function of ε.

For kL � 1, ν− dangerously approaches 0 as k4L - exponent
might become negative ⇒ lattice relevant in IR.

Destroying AdS2 × R2:

Add the following third order term:

ρν− sin(kL)

Close to x = 0, perturbation theory is saved, however away
from x = 0 perturbation theory breaks down!
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be a function of ε.

For kL � 1, ν− dangerously approaches 0 as k4L - exponent
might become negative ⇒ lattice relevant in IR.

Destroying AdS2 × R2:

Add the following third order term:

η(ν−)ρν−x sin(kLx) .
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Breakdown of Perturbation theory

How to decide which is which?

Proceed without any approximation - Numerics.
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Cold planar horizons are floppy

Zero Temperature Numerics

Ansetzen & Numerics

Most general line element, without any gauge choice, and compatible
with our symmetries takes the following form

ds2 =
L2

y2

[
−(1− y)2 G(y)Adt2 +

B

(1− y)2 G(y)
(dy + F dx)2 + S1dx2 + S2dw2

]
A = L

√
6 (1− y)P dt .

where G(y) = 1 + 2y + 3y2. For A = B = S1 = S2 = P = 1 and F = 0 it

reduces to extreme RN black hole.

Comments:

Small irrational powers - (1− y)ν−(kL) - ν−(1) ≈ 0.012.

Use finite difference patch near H and spectral collocation.

Very steep gradients - need to use adaptive mesh refinement
in finite difference patch.

Use De-Turck method - thank you Toby!

Alternatively, use very, very small T/µ̄.

9 / 15



Cold planar horizons are floppy

Zero Temperature Numerics

Ansetzen & Numerics

Most general line element, without any gauge choice, and compatible
with our symmetries takes the following form

ds2 =
L2

y2

[
−(1− y)2 G(y)Adt2 +

B

(1− y)2 G(y)
(dy + F dx)2 + S1dx2 + S2dw2

]
A = L

√
6 (1− y)P dt .

where G(y) = 1 + 2y + 3y2. For A = B = S1 = S2 = P = 1 and F = 0 it

reduces to extreme RN black hole.

Comments:

Small irrational powers - (1− y)ν−(kL) - ν−(1) ≈ 0.012.

Use finite difference patch near H and spectral collocation.

Very steep gradients - need to use adaptive mesh refinement
in finite difference patch.

Use De-Turck method - thank you Toby!

Alternatively, use very, very small T/µ̄.

9 / 15



Cold planar horizons are floppy

Zero Temperature Numerics

Ansetzen & Numerics

Most general line element, without any gauge choice, and compatible
with our symmetries takes the following form

ds2 =
L2

y2

[
−(1− y)2 G(y)Adt2 +

B

(1− y)2 G(y)
(dy + F dx)2 + S1dx2 + S2dw2

]
A = L

√
6 (1− y)P dt .

where G(y) = 1 + 2y + 3y2. For A = B = S1 = S2 = P = 1 and F = 0 it

reduces to extreme RN black hole.

Comments:

Small irrational powers - (1− y)ν−(kL) - ν−(1) ≈ 0.012.

Use finite difference patch near H and spectral collocation.

Very steep gradients - need to use adaptive mesh refinement
in finite difference patch.

Use De-Turck method - thank you Toby!

Alternatively, use very, very small T/µ̄.

9 / 15



Cold planar horizons are floppy

Zero Temperature Numerics

Ansetzen & Numerics

Most general line element, without any gauge choice, and compatible
with our symmetries takes the following form

ds2 =
L2

y2

[
−(1− y)2 G(y)Adt2 +

B

(1− y)2 G(y)
(dy + F dx)2 + S1dx2 + S2dw2

]
A = L

√
6 (1− y)P dt .

where G(y) = 1 + 2y + 3y2. For A = B = S1 = S2 = P = 1 and F = 0 it

reduces to extreme RN black hole.

Comments:

Small irrational powers - (1− y)ν−(kL) - ν−(1) ≈ 0.012.

Use finite difference patch near H and spectral collocation.

Very steep gradients - need to use adaptive mesh refinement
in finite difference patch.

Use De-Turck method - thank you Toby!

Alternatively, use very, very small T/µ̄.

9 / 15



Cold planar horizons are floppy

Zero Temperature Numerics

Ansetzen & Numerics

Most general line element, without any gauge choice, and compatible
with our symmetries takes the following form

ds2 =
L2

y2

[
−(1− y)2 G(y)Adt2 +

B

(1− y)2 G(y)
(dy + F dx)2 + S1dx2 + S2dw2

]
A = L

√
6 (1− y)P dt .

where G(y) = 1 + 2y + 3y2. For A = B = S1 = S2 = P = 1 and F = 0 it

reduces to extreme RN black hole.

Comments:

Small irrational powers - (1− y)ν−(kL) - ν−(1) ≈ 0.012.

Use finite difference patch near H and spectral collocation.

Very steep gradients - need to use adaptive mesh refinement
in finite difference patch.

Use De-Turck method - thank you Toby!

Alternatively, use very, very small T/µ̄.

9 / 15



Cold planar horizons are floppy

Zero Temperature Numerics

Ansetzen & Numerics

Most general line element, without any gauge choice, and compatible
with our symmetries takes the following form

ds2 =
L2

y2

[
−(1− y)2 G(y)Adt2 +

B

(1− y)2 G(y)
(dy + F dx)2 + S1dx2 + S2dw2

]
A = L

√
6 (1− y)P dt .

where G(y) = 1 + 2y + 3y2. For A = B = S1 = S2 = P = 1 and F = 0 it

reduces to extreme RN black hole.

Comments:

Small irrational powers - (1− y)ν−(kL) - ν−(1) ≈ 0.012.

Use finite difference patch near H and spectral collocation.

Very steep gradients - need to use adaptive mesh refinement
in finite difference patch.

Use De-Turck method - thank you Toby!

Alternatively, use very, very small T/µ̄.

9 / 15



Cold planar horizons are floppy

Zero Temperature Numerics

Ansetzen & Numerics

Most general line element, without any gauge choice, and compatible
with our symmetries takes the following form

ds2 =
L2

y2

[
−(1− y)2 G(y)Adt2 +

B

(1− y)2 G(y)
(dy + F dx)2 + S1dx2 + S2dw2

]
A = L

√
6 (1− y)P dt .

where G(y) = 1 + 2y + 3y2. For A = B = S1 = S2 = P = 1 and F = 0 it

reduces to extreme RN black hole.

Comments:

Small irrational powers - (1− y)ν−(kL) - ν−(1) ≈ 0.012.

Use finite difference patch near H and spectral collocation.

Very steep gradients - need to use adaptive mesh refinement
in finite difference patch.

Use De-Turck method - thank you Toby!

Alternatively, use very, very small T/µ̄.
9 / 15



Cold planar horizons are floppy

Results

Results:

To measure deviations from AdS2 × R2:

$ ≡ Wmax

Wmin
− 1 ,

where W = (∂w)a(∂w)a|H.

For small A0, $ ∝ A0 - broken
translational invariance ∀A0 6=0!!!

We repeated this calculation for several
values of k0, and find similar results. 0.0 0.5 1.0 1.5 2.0

0

5

10

15

20

A0

v

Einstein’s equations chose a resummation that renders
the IR floppy - broken translational invariance.
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Results

Emergent picture:

AdS4 + μ + α cos (kLx)

AdS x R 2
2

Inhomogeneous IR

E
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Cold planar horizons are floppy

What about AdS4?

Periodic potentials in AdS4

Having seen the results in AdS2, one might wonder whether the
same happens in AdS4 for which µ̄ = 0.

The T 6= 0 case was considered first by Chesler, Lucas and Sachdev.
We will restrict to T = 0, which was not covered by their analysis.
Can be done in an analytic perturbative expansion (valid for small
lattice amplitude) and numerically, for any lattice amplitude.

Results:

Recall At(x, 0) = α cos(kLx).

1D moduli space: α̃ ≡ α/kL.

IR does not break ∂x.

Good agreement between numerics
and analytic results: 10th order.

No phase transition up to α̃ ∼ 6. 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

aé

-
»»∂t »»2»»∂w »»2
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Cold planar horizons are floppy

What about AdS4?

Disorder in AdS4:

One periodic source does not do, what about many?

Φs(x,w, 0) = 2V̄

Nx−1∑
i=1

Nw−1∑
j=1

AiBj cos[k(i)x+ ] cos[q(j)w + ] .

where γi and λj are random phases, and Φs is the source for
operator of ∆+ = 2.

Averaged quantities are defined as:

〈f〉R ≡ lim
Nw→+∞

lim
Nx→+∞

Nx−1∏
i=1

∫ 2π

0

dγi
2π

Nw−1∏
j=1

∫ 2π

0

dδj
2π

f .

If we are interested in isotropic local Gaussian disorder:

N = Nx = Nw , Ai = Bj =

√
k0

N
and k(ξ) = q(ξ) = ξ

π k0

N

in which case:

〈Φ〉R = 0 , and 〈Φs(x,w, 0)Φs(s, h, 0)〉R = V̄ 2δ(x− s)δ(w − h) .
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Cold planar horizons are floppy

What about AdS4?

Results:

Example of a fully 3D backreacted run.

Contour plot of Φ.

Common questions:

Since the pointwise value of |Φ|
grows likes

√
N , why don’t you

form black holes bound states?

Is the boundary data regular
enough for this problem to be well
posed, as N → +∞?

〈gab〉R is accurately described by a Lifshitz geometry:

〈ds2〉R =
L2

y2

[
− dt2

y2(z̄−1)
+ dx2 + dw2 + dy2

]
.
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