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Einsteins' equations to states of a dual conformal field theory.

@ Near horizon geometries of AdS black holes describe the low energy
dissipative dynamics of strongly interacting QFTs.

@ Near horizon geometries of extremal planar black holes capture the
dissipative dynamics of novel phases of 7' = 0 quantum matter.

o Extensive classification exists for translational invariant systems.

@ A more realistic model needs to account for a ubiquitous property of
CMT systems: breaking translational invariance.

What this talk is not:

@ 0, is broken explicitly in all matter sectors.
@ For other setups recall Jerome's talk.

@ What | am going to describe doesn’t happen in such setups.
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where F' = dA and L is the AdS, length scale.

Comments:

o Field content: and Maxwell field

Consider solutions in the Poincaré patch with fixed boundary
metric
ds? = —dt? + dz* + dw?

@ Translational invariance is explicitly broken via the boundary
behaviour of A;:

A(z, w,y) = p(z, w) + (p(z, W) y + ...

(]

Focus on d = 4, with u(x) = i [1 + Ag cos(krx)].
@ Moduli space space of solutions is 2D: Ay and ko = k1. /[i.
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An infamous solution:

@ Study time independent perturbations of extremal RN:

2 L?

d 2
ds e {fG(y)(l —y)2dt® + i 5 da® + dwﬂ ,

Gy)(1—y)
A=LV6(1—y)dt,
(1)
with G(y) =1+ 2y + 3y? and 0A(0,z) = L6 Ao cos(krLz).

@ Possible to do analytically, but not illuminating.

@ Instead, take near horizon limit:
t=71/e, y=1—¢ep/6 with & —0.
@ Brings line element (1) to

2
ds® = L? {% (—/)2d7'2 + dp%) +dz® + dwﬂ ,

Lp
A=2P4r.
Vol
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only depends on near horizon geometry.

@ Start with AdS, x R2 written in Poincaré-like coordinates
d 2
ds? = (—p2d72 + /;) + L2d2? + L?dw? and A= 1. pdr,
/)

where , and p = 0 is the horizon location.
@ Solve for the Kodama-Ishibashi variable:
@M (p, x) = 7 cos(kpz)p ).
@ Third order Kodama-Ishibashi variable grows faster than first order:

3™ (px) = ...+ B(r_) 6Ly p"~ ") log p cos(kpz) + ...

Breakdown of perturbation theory - resumm perturbation theory.
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@ Promote v_ to be a function of 42, in such a way that the
expansion cancels the log.

@ Similar to the construction of Geons where w is promoted to
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Destroying AdSs x R?:
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where 7(v_) can be chosen to cancel the diverging log.
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L Breakdown of Perturbation theory

A tale of two resummations:

Preserving AdS, x R?:

@ Promote v_ to be a function of 42, in such a way that the
expansion cancels the log.

@ Similar to the construction of Geons where w is promoted to
be a function of €.

@ For k1, < 1, v_ dangerously approaches 0 as k} - exponent
might become negative = lattice relevant in IR.

Destroying AdSs x R?:

@ Add the following third order term:

n(v_)p"~xsin(kpx).
o Close to x = 0, perturbation theory is saved, however away
from & = O perturbation theory breaks down!
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Ansetzen & Numerics

Most general line element, without any gauge choice, and compatible
with our symmetries takes the following form

= [—(1 —y)’ G(y)Adt® + (dy + Fdz)® + Sidz” + Sgdwﬂ

_ B
(1-9)?G(y)
A=LV6(1—y)Pdt.

where G(y) =142y +3y>. Fr A=B=5 =S =P=1and F=0it
reduces to extreme RN black hole.

Comments:

@ Small irrational powers - (1 — y)*~(k2) - »_(1) ~ 0.012.
@ Use finite difference patch near H and spectral collocation.

@ Very steep gradients - need to use adaptive mesh refinement
in finite difference patch.

@ Use De-Turck method - thank you Toby!
o Alternatively, use very, very small T'/ .
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@ To measure deviations from AdSs x R?: 2

_ Wmax 1
w = - 5 1
Wmin ’
where W = (9)*(9w)aly- 510

@ For small Ay, @ o< Ag - broken
translational invariance V 4,0!!! g

@ We repeated this calculation for several
values of kg, and find similar results. 0.0 05 1.0 15 20

Einstein's equations chose a resummation that renders
the IR floppy - broken translational invariance.
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Emergent picture:

— AdS, + p + a cos (k x) \
2\;\/\.

AdS x R
Inhomogeneous IR
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Periodic potentials in AdS,

@ Having seen the results in AdSs, one might wonder whether the
same happens in for which

@ The T # 0 case was considered first by Chesler, Lucas and Sachdev.

@ We will restrict to 7" = 0, which was not covered by their analysis.

@ Can be done in an analytic perturbative expansion (valid for small
lattice amplitude) and numerically, for any lattice amplitude.

1.0|

@ Recall A:(z,0) = acos(kpx). o
@ 1D moduli space: & = «o/kp. o
@ IR does not break d,. o

0.4

@ Good agreement between numerics
and analytic results: 10" order.

0.2

0.0

No phase transition up to & ~ 6. .
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@, (z,w,0) =2V Z Z A;Bj coslk(i) x 4+ i) cos[g(d) w + Aj],
=1 j=1
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@, (z,w,0) =2V Z Z A;Bj coslk(i) x 4+ i) cos[g(d) w + Aj],

where 7; and \; are random phases, and ®, is the source for
operator of A, = 2.
@ Averaged quantities are defined as:

Ng—1 2 d
a1 73]
i= j:

@ If we are interested in isotropic local Gaussian disorder:

Nu, 1

27 didj
o 2w

N=No=No, Ai=B=1[% and k©=q6) =",

in which case:

(®Vr =0, and (®s(z,w,0)®s(s,h,0))r = V6(x—s)6(w—h).
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Results:

@ Example of a fully 3D backreacted run. 1050

o Contour plot of ®. 1025

. 1.020
@ Common questions:

. . . Z 1015
o Since the pointwise value of |P|

grows likes v/IV, why don’t you 1010 %

form black holes bound states?
1.005

o Is the boundary data regular 7
enough for this problem to be well Ry 568 010 015 020
posed, as N — +oo? v

(gap) R is accurately described by a Lifshitz geometry:

L? de?
2
(ds >R = ? _7y2(271)
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@ Disorder potentials affect AdSy.

What to ask me after the talk:

@ What about more general deformations?

o Is there a full function of two variables worth of
deformations?

@ What are the implications of this IR to transport?

@ Can these new IR geometries affect time dependence?

@ Can we make a connection with glassy physics?
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