Cold planar horizons are floppy

Jorge E. Santos

New frontiers in dynamical gravity

In collaboration with
Sean A. Hartnoll - arXiv:1402.0872 and arXiv:1403.4612

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of $T=0$ quantum matter.

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of $T=0$ quantum matter.
- Extensive classification exists for translational invariant systems.

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of $T=0$ quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of $T=0$ quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

> What this talk is not:

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of $T=0$ quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

What this talk is not:

- ∂_{x} is broken explicitly in all matter sectors.

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of $T=0$ quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

What this talk is not:

- ∂_{x} is broken explicitly in all matter sectors.
- For other setups recall Jerome's talk.

Motivation

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of $T=0$ quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

What this talk is not:

- ∂_{x} is broken explicitly in all matter sectors.
- For other setups recall Jerome's talk.
- What I am going to describe doesn't happen in such setups.

1 The Einstein-Maxwell system

2 Breakdown of Perturbation theory

3 Zero Temperature Numerics

4 Results

5 What about AdS_{4} ?

6 Conclusion \& Outlook

The bulk theory we study is governed by the Lagrangian

$$
S=\frac{1}{16 \pi G_{d}} \int \mathrm{~d}^{d} x \sqrt{-g}\left[R+\frac{(d-1)(d-2)}{L^{2}}-\frac{1}{2} F^{a b} F_{a b}\right]
$$

where $F=\mathrm{d} A$ and L is the AdS_{d} length scale.

The bulk theory we study is governed by the Lagrangian

$$
S=\frac{1}{16 \pi G_{d}} \int \mathrm{~d}^{d} x \sqrt{-g}\left[R+\frac{(d-1)(d-2)}{L^{2}}-\frac{1}{2} F^{a b} F_{a b}\right],
$$

where $F=\mathrm{d} A$ and L is the AdS_{d} length scale.
Comments:

The bulk theory we study is governed by the Lagrangian

$$
S=\frac{1}{16 \pi G_{d}} \int \mathrm{~d}^{d} x \sqrt{-g}\left[R+\frac{(d-1)(d-2)}{L^{2}}-\frac{1}{2} F^{a b} F_{a b}\right],
$$

where $F=\mathrm{d} A$ and L is the AdS_{d} length scale.

Comments:

- Field content: gravity and Maxwell field

The bulk theory we study is governed by the Lagrangian

$$
S=\frac{1}{16 \pi G_{d}} \int \mathrm{~d}^{d} x \sqrt{-g}\left[R+\frac{(d-1)(d-2)}{L^{2}}-\frac{1}{2} F^{a b} F_{a b}\right],
$$

where $F=\mathrm{d} A$ and L is the AdS_{d} length scale.

Comments:

- Field content: gravity and Maxwell field
- Consider solutions in the Poincaré patch with fixed boundary metric

$$
\mathrm{d} s_{\partial}^{2}=-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} \mathbf{w}^{2}
$$

The bulk theory we study is governed by the Lagrangian

$$
S=\frac{1}{16 \pi G_{d}} \int \mathrm{~d}^{d} x \sqrt{-g}\left[R+\frac{(d-1)(d-2)}{L^{2}}-\frac{1}{2} F^{a b} F_{a b}\right],
$$

where $F=\mathrm{d} A$ and L is the AdS_{d} length scale.

Comments:

- Field content: gravity and Maxwell field
- Consider solutions in the Poincaré patch with fixed boundary metric

$$
\mathrm{d} s_{\partial}^{2}=-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} \mathbf{w}^{2}
$$

- Translational invariance is explicitly broken via the boundary behaviour of A_{t} :

$$
A_{t}(x, \mathbf{w}, y)=\mu(x, \mathbf{w})+\langle\rho(x, \mathbf{w})\rangle y+\ldots
$$

The bulk theory we study is governed by the Lagrangian

$$
S=\frac{1}{16 \pi G_{d}} \int \mathrm{~d}^{d} x \sqrt{-g}\left[R+\frac{(d-1)(d-2)}{L^{2}}-\frac{1}{2} F^{a b} F_{a b}\right],
$$

where $F=\mathrm{d} A$ and L is the AdS_{d} length scale.

Comments:

- Field content: gravity and Maxwell field
- Consider solutions in the Poincaré patch with fixed boundary metric

$$
\mathrm{d} s_{\partial}^{2}=-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} \mathbf{w}^{2}
$$

- Translational invariance is explicitly broken via the boundary behaviour of A_{t} :

$$
A_{t}(x, \mathbf{w}, y)=\mu(x, \mathbf{w})+\langle\rho(x, \mathbf{w})\rangle y+\ldots
$$

- Focus on $d=4$, with $\mu(x)=\bar{\mu}\left[1+A_{0} \cos \left(k_{L} x\right)\right]$.

The bulk theory we study is governed by the Lagrangian

$$
S=\frac{1}{16 \pi G_{d}} \int \mathrm{~d}^{d} x \sqrt{-g}\left[R+\frac{(d-1)(d-2)}{L^{2}}-\frac{1}{2} F^{a b} F_{a b}\right],
$$

where $F=\mathrm{d} A$ and L is the AdS_{d} length scale.

Comments:

- Field content: gravity and Maxwell field
- Consider solutions in the Poincaré patch with fixed boundary metric

$$
\mathrm{d} s_{\partial}^{2}=-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} \mathbf{w}^{2}
$$

- Translational invariance is explicitly broken via the boundary behaviour of A_{t} :

$$
A_{t}(x, \mathbf{w}, y)=\mu(x, \mathbf{w})+\langle\rho(x, \mathbf{w})\rangle y+\ldots
$$

- Focus on $d=4$, with $\mu(x)=\bar{\mu}\left[1+A_{0} \cos \left(k_{L} x\right)\right]$.
- Moduli space space of solutions is 2D: A_{0} and $k_{0} \equiv k_{L} / \bar{\mu}$.

An infamous solution:

An infamous solution:

- Study time independent perturbations of extremal RN:

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-G(y)(1-y)^{2} \mathrm{~d} t^{2}+\frac{\mathrm{d} y^{2}}{G(y)(1-y)^{2}}+\mathrm{d} x^{2}+\mathrm{d} w^{2}\right] \\
A=L \sqrt{6}(1-y) \mathrm{d} t
\end{gathered}
$$

with $G(y)=1+2 y+3 y^{2}$ and $\delta A_{t}(0, x)=L \sqrt{6} A_{0} \cos \left(k_{L} x\right)$.

An infamous solution:

- Study time independent perturbations of extremal RN:

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-G(y)(1-y)^{2} \mathrm{~d} t^{2}+\frac{\mathrm{d} y^{2}}{G(y)(1-y)^{2}}+\mathrm{d} x^{2}+\mathrm{d} w^{2}\right] \\
A=L \sqrt{6}(1-y) \mathrm{d} t
\end{gathered}
$$

with $G(y)=1+2 y+3 y^{2}$ and $\delta A_{t}(0, x)=L \sqrt{6} A_{0} \cos \left(k_{L} x\right)$.

- Possible to do analytically, but not illuminating.

An infamous solution:

- Study time independent perturbations of extremal RN:

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-G(y)(1-y)^{2} \mathrm{~d} t^{2}+\frac{\mathrm{d} y^{2}}{G(y)(1-y)^{2}}+\mathrm{d} x^{2}+\mathrm{d} w^{2}\right] \\
A=L \sqrt{6}(1-y) \mathrm{d} t
\end{gathered}
$$

with $G(y)=1+2 y+3 y^{2}$ and $\delta A_{t}(0, x)=L \sqrt{6} A_{0} \cos \left(k_{L} x\right)$.

- Possible to do analytically, but not illuminating.
- Instead, take near horizon limit:

$$
t=\tau / \varepsilon, \quad y=1-\varepsilon \rho / 6 \quad \text { with } \quad \varepsilon \rightarrow 0
$$

An infamous solution:

- Study time independent perturbations of extremal RN:

$$
\begin{gather*}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-G(y)(1-y)^{2} \mathrm{~d} t^{2}+\frac{\mathrm{d} y^{2}}{G(y)(1-y)^{2}}+\mathrm{d} x^{2}+\mathrm{d} w^{2}\right] \\
A=L \sqrt{6}(1-y) \mathrm{d} t \tag{1}
\end{gather*}
$$

with $G(y)=1+2 y+3 y^{2}$ and $\delta A_{t}(0, x)=L \sqrt{6} A_{0} \cos \left(k_{L} x\right)$.

- Possible to do analytically, but not illuminating.
- Instead, take near horizon limit:

$$
t=\tau / \varepsilon, \quad y=1-\varepsilon \rho / 6 \quad \text { with } \quad \varepsilon \rightarrow 0
$$

- Brings line element (1) to

$$
\begin{gathered}
\mathrm{d} s^{2}=L^{2}\left[\frac{1}{6}\left(-\rho^{2} \mathrm{~d} \tau^{2}+\frac{\mathrm{d} \rho^{2}}{\rho^{2}}\right)+\mathrm{d} x^{2}+\mathrm{d} w^{2}\right] \\
A=\frac{L \rho}{\sqrt{6}} \mathrm{~d} \tau
\end{gathered}
$$

Dream:

Study finite size time independent perturbations about pure $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

Dream:

Study finite size time independent perturbations about pure $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

- Start with $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ written in Poincaré-like coordinates

$$
\mathrm{d} s^{2}=L_{2}^{2}\left(-\rho^{2} \mathrm{~d} \tau^{2}+\frac{\mathrm{d} \rho^{2}}{\rho^{2}}\right)+L^{2} \mathrm{~d} x^{2}+L^{2} \mathrm{~d} w^{2} \quad \text { and } \quad A=L_{2} \rho \mathrm{~d} \tau .
$$

Dream:

Study finite size time independent perturbations about pure $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

- Start with $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ written in Poincaré-like coordinates

$$
\mathrm{d} s^{2}=L_{2}^{2}\left(-\rho^{2} \mathrm{~d} \tau^{2}+\frac{\mathrm{d} \rho^{2}}{\rho^{2}}\right)+L^{2} \mathrm{~d} x^{2}+L^{2} \mathrm{~d} w^{2} \quad \text { and } \quad A=L_{2} \rho \mathrm{~d} \tau
$$

where $L_{2} \equiv L / \sqrt{6}$, and $\rho=0$ is the horizon location.

Dream:

Study finite size time independent perturbations about pure $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

- Start with $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ written in Poincaré-like coordinates

$$
\mathrm{d} s^{2}=L_{2}^{2}\left(-\rho^{2} \mathrm{~d} \tau^{2}+\frac{\mathrm{d} \rho^{2}}{\rho^{2}}\right)+L^{2} \mathrm{~d} x^{2}+L^{2} \mathrm{~d} w^{2} \quad \text { and } \quad A=L_{2} \rho \mathrm{~d} \tau
$$

where $L_{2} \equiv L / \sqrt{6}$, and $\rho=0$ is the horizon location.

- Solve for the Kodama-Ishibashi variable:

$$
\begin{aligned}
& \Phi_{-}^{(1)}(\rho, x)=\tilde{\gamma} \cos \left(k_{L} x\right) \rho^{\nu_{-}\left(k_{L}\right)} \text { where } \\
& \qquad \nu_{-}\left(k_{L}\right)=\sqrt{\left(\frac{1}{2}-\sqrt{\frac{k_{L}^{2}}{3}+1}\right)^{2}-\frac{k_{L}^{2}}{6}}-\frac{1}{2}>0
\end{aligned}
$$

Dream:

Study finite size time independent perturbations about pure $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

- Start with $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ written in Poincaré-like coordinates
$\mathrm{d} s^{2}=L_{2}^{2}\left(-\rho^{2} \mathrm{~d} \tau^{2}+\frac{\mathrm{d} \rho^{2}}{\rho^{2}}\right)+L^{2} \mathrm{~d} x^{2}+L^{2} \mathrm{~d} w^{2} \quad$ and $\quad A=L_{2} \rho \mathrm{~d} \tau$,
where $L_{2} \equiv L / \sqrt{6}$, and $\rho=0$ is the horizon location.
- Solve for the Kodama-Ishibashi variable:

$$
\Phi_{-}^{(1)}(\rho, x)=\tilde{\gamma} \cos \left(k_{L} x\right) \rho^{\nu_{-}\left(k_{L}\right)}
$$

- Third order Kodama-Ishibashi variable grows faster than first order:

$$
\Phi_{-}^{(3)}(\rho, x)=\ldots+\tilde{\beta}\left(\nu_{-}\right) \delta L_{2} \rho^{\nu_{-}\left(k_{L}\right)} \log \rho \cos \left(k_{L} x\right)+\ldots
$$

Dream:

Study finite size time independent perturbations about pure $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

- Start with $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ written in Poincaré-like coordinates
$\mathrm{d} s^{2}=L_{2}^{2}\left(-\rho^{2} \mathrm{~d} \tau^{2}+\frac{\mathrm{d} \rho^{2}}{\rho^{2}}\right)+L^{2} \mathrm{~d} x^{2}+L^{2} \mathrm{~d} w^{2} \quad$ and $\quad A=L_{2} \rho \mathrm{~d} \tau$,
where $L_{2} \equiv L / \sqrt{6}$, and $\rho=0$ is the horizon location.
- Solve for the Kodama-Ishibashi variable:

$$
\Phi_{-}^{(1)}(\rho, x)=\tilde{\gamma} \cos \left(k_{L} x\right) \rho^{\nu_{-}\left(k_{L}\right)}
$$

- Third order Kodama-Ishibashi variable grows faster than first order:

$$
\Phi_{-}^{(3)}(\rho, x)=\ldots+\tilde{\beta}\left(\nu_{-}\right) \delta L_{2} \rho^{\nu_{-}\left(k_{L}\right)} \log \rho \cos \left(k_{L} x\right)+\ldots
$$

Breakdown of perturbation theory - resumm perturbation theory.

A tale of two resummations:

$$
\text { Preserving } \mathrm{AdS}_{2} \times \mathbb{R}^{2} \text { : }
$$

A tale of two resummations:

Preserving $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

- Promote ν_{-}to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the log.

A tale of two resummations:

Preserving $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

- Promote ν_{-}to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the log.
- Similar to the construction of Geons where ω is promoted to be a function of ε.

A tale of two resummations:

Preserving $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

- Promote ν_{-}to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the log.
- Similar to the construction of Geons where ω is promoted to be a function of ε.
- For $k_{L} \ll 1, \nu_{-}$dangerously approaches 0 as k_{L}^{4} - exponent might become negative \Rightarrow lattice relevant in IR.

A tale of two resummations:

Preserving $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

- Promote ν_{-}to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the log.
- Similar to the construction of Geons where ω is promoted to be a function of ε.
- For $k_{L} \ll 1, \nu_{-}$dangerously approaches 0 as k_{L}^{4} - exponent might become negative \Rightarrow lattice relevant in IR.

$$
\text { Destroying } \mathrm{AdS}_{2} \times \mathbb{R}^{2} \text { : }
$$

A tale of two resummations:

Preserving $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

- Promote ν_{-}to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the log.
- Similar to the construction of Geons where ω is promoted to be a function of ε.
- For $k_{L} \ll 1$, ν_{-}dangerously approaches 0 as k_{L}^{4} - exponent might become negative \Rightarrow lattice relevant in IR.

Destroying $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

- Add the following third order term:

$$
\eta\left(\nu_{-}\right) \rho^{\nu_{-}} x \sin \left(k_{L} x\right)
$$

A tale of two resummations:

Preserving $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

- Promote ν_{-}to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the log.
- Similar to the construction of Geons where ω is promoted to be a function of ε.
- For $k_{L} \ll 1, \nu_{-}$dangerously approaches 0 as k_{L}^{4} - exponent might become negative \Rightarrow lattice relevant in IR.

$$
\text { Destroying } \mathrm{AdS}_{2} \times \mathbb{R}^{2} \text { : }
$$

- Add the following third order term:

$$
\eta\left(\nu_{-}\right) \rho^{\nu_{-}} x \sin \left(k_{L} x\right)
$$

where $\eta\left(\nu_{-}\right)$can be chosen to cancel the diverging log.

A tale of two resummations:

Preserving $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

- Promote ν_{-}to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the log.
- Similar to the construction of Geons where ω is promoted to be a function of ε.
- For $k_{L} \ll 1, \nu_{-}$dangerously approaches 0 as k_{L}^{4} - exponent might become negative \Rightarrow lattice relevant in IR.

$$
\text { Destroying } \mathrm{AdS}_{2} \times \mathbb{R}^{2} \text { : }
$$

- Add the following third order term:

$$
\eta\left(\nu_{-}\right) \rho^{\nu_{-}} x \sin \left(k_{L} x\right) .
$$

- Close to $x=0$, perturbation theory is saved, however away from $x=0$ perturbation theory breaks down!

How to decide which is which?

Proceed without any approximation - Numerics.

Ansetzen \& Numerics

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-(1-y)^{2} G(y) A \mathrm{~d} t^{2}+\frac{B}{(1-y)^{2} G(y)}(\mathrm{d} y+F \mathrm{~d} x)^{2}+S_{1} \mathrm{~d} x^{2}+S_{2} \mathrm{~d} w^{2}\right] \\
A=L \sqrt{6}(1-y) P \mathrm{~d} t .
\end{gathered}
$$

where $G(y)=1+2 y+3 y^{2}$. For $A=B=S_{1}=S_{2}=P=1$ and $F=0$ it reduces to extreme RN black hole.

Ansetzen \& Numerics

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-(1-y)^{2} G(y) A \mathrm{~d} t^{2}+\frac{B}{(1-y)^{2} G(y)}(\mathrm{d} y+F \mathrm{~d} x)^{2}+S_{1} \mathrm{~d} x^{2}+S_{2} \mathrm{~d} w^{2}\right] \\
A=L \sqrt{6}(1-y) P \mathrm{~d} t
\end{gathered}
$$

where $G(y)=1+2 y+3 y^{2}$. For $A=B=S_{1}=S_{2}=P=1$ and $F=0$ it reduces to extreme RN black hole.

Comments:

Ansetzen \& Numerics

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-(1-y)^{2} G(y) A \mathrm{~d} t^{2}+\frac{B}{(1-y)^{2} G(y)}(\mathrm{d} y+F \mathrm{~d} x)^{2}+S_{1} \mathrm{~d} x^{2}+S_{2} \mathrm{~d} w^{2}\right] \\
A=L \sqrt{6}(1-y) P \mathrm{~d} t
\end{gathered}
$$

where $G(y)=1+2 y+3 y^{2}$. For $A=B=S_{1}=S_{2}=P=1$ and $F=0$ it reduces to extreme RN black hole.

Comments:

- Small irrational powers - $(1-y)^{\nu_{-}\left(k_{L}\right)}-\nu_{-}(1) \approx 0.012$.

Ansetzen \& Numerics

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-(1-y)^{2} G(y) A \mathrm{~d} t^{2}+\frac{B}{(1-y)^{2} G(y)}(\mathrm{d} y+F \mathrm{~d} x)^{2}+S_{1} \mathrm{~d} x^{2}+S_{2} \mathrm{~d} w^{2}\right] \\
A=L \sqrt{6}(1-y) P \mathrm{~d} t
\end{gathered}
$$

where $G(y)=1+2 y+3 y^{2}$. For $A=B=S_{1}=S_{2}=P=1$ and $F=0$ it reduces to extreme RN black hole.

Comments:

- Small irrational powers - $(1-y)^{\nu_{-}\left(k_{L}\right)}-\nu_{-}(1) \approx 0.012$.
- Use finite difference patch near \mathcal{H} and spectral collocation.

Ansetzen \& Numerics

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-(1-y)^{2} G(y) A \mathrm{~d} t^{2}+\frac{B}{(1-y)^{2} G(y)}(\mathrm{d} y+F \mathrm{~d} x)^{2}+S_{1} \mathrm{~d} x^{2}+S_{2} \mathrm{~d} w^{2}\right] \\
A=L \sqrt{6}(1-y) P \mathrm{~d} t
\end{gathered}
$$

where $G(y)=1+2 y+3 y^{2}$. For $A=B=S_{1}=S_{2}=P=1$ and $F=0$ it reduces to extreme RN black hole.

Comments:

- Small irrational powers - $(1-y)^{\nu_{-}\left(k_{L}\right)}-\nu_{-}(1) \approx 0.012$.
- Use finite difference patch near \mathcal{H} and spectral collocation.
- Very steep gradients - need to use adaptive mesh refinement in finite difference patch.

Ansetzen \& Numerics

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-(1-y)^{2} G(y) A \mathrm{~d} t^{2}+\frac{B}{(1-y)^{2} G(y)}(\mathrm{d} y+F \mathrm{~d} x)^{2}+S_{1} \mathrm{~d} x^{2}+S_{2} \mathrm{~d} w^{2}\right] \\
A=L \sqrt{6}(1-y) P \mathrm{~d} t
\end{gathered}
$$

where $G(y)=1+2 y+3 y^{2}$. For $A=B=S_{1}=S_{2}=P=1$ and $F=0$ it reduces to extreme RN black hole.

Comments:

- Small irrational powers - $(1-y)^{\nu_{-}\left(k_{L}\right)}-\nu_{-}(1) \approx 0.012$.
- Use finite difference patch near \mathcal{H} and spectral collocation.
- Very steep gradients - need to use adaptive mesh refinement in finite difference patch.
- Use De-Turck method - thank you Toby!

Ansetzen \& Numerics

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{L^{2}}{y^{2}}\left[-(1-y)^{2} G(y) A \mathrm{~d} t^{2}+\frac{B}{(1-y)^{2} G(y)}(\mathrm{d} y+F \mathrm{~d} x)^{2}+S_{1} \mathrm{~d} x^{2}+S_{2} \mathrm{~d} w^{2}\right] \\
A=L \sqrt{6}(1-y) P \mathrm{~d} t
\end{gathered}
$$

where $G(y)=1+2 y+3 y^{2}$. For $A=B=S_{1}=S_{2}=P=1$ and $F=0$ it reduces to extreme RN black hole.

Comments:

- Small irrational powers - $(1-y)^{\nu_{-}\left(k_{L}\right)}-\nu_{-}(1) \approx 0.012$.
- Use finite difference patch near \mathcal{H} and spectral collocation.
- Very steep gradients - need to use adaptive mesh refinement in finite difference patch.
- Use De-Turck method - thank you Toby!
- Alternatively, use very, very small $T / \bar{\mu}$.

Results:

Results:

- To measure deviations from $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

$$
\varpi \equiv \frac{\mathcal{W}_{\max }}{\mathcal{W}_{\min }}-1,
$$

where $\mathcal{W}=\left.\left(\partial_{w}\right)^{a}\left(\partial_{w}\right)_{a}\right|_{\mathcal{H}}$.

Results:

- To measure deviations from $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

$$
\varpi \equiv \frac{\mathcal{W}_{\max }}{\mathcal{W}_{\min }}-1
$$

where $\mathcal{W}=\left.\left(\partial_{w}\right)^{a}\left(\partial_{w}\right)_{a}\right|_{\mathcal{H}}$.

Results:

- To measure deviations from $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

$$
\varpi \equiv \frac{\mathcal{W}_{\max }}{\mathcal{W}_{\min }}-1
$$

where $\mathcal{W}=\left.\left(\partial_{w}\right)^{a}\left(\partial_{w}\right)_{a}\right|_{\mathcal{H}}$.

- For small $A_{0}, \varpi \propto A_{0}$ - broken translational invariance $\forall_{A_{0} \neq 0}$!!!

Results:

- To measure deviations from $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

$$
\varpi \equiv \frac{\mathcal{W}_{\max }}{\mathcal{W}_{\min }}-1
$$

where $\mathcal{W}=\left.\left(\partial_{w}\right)^{a}\left(\partial_{w}\right)_{a}\right|_{\mathcal{H}}$.

- For small $A_{0}, \varpi \propto A_{0}$ - broken translational invariance $\forall_{A_{0} \neq 0}$!!!
- We repeated this calculation for several values of k_{0}, and find similar results.

Results:

- To measure deviations from $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$:

$$
\varpi \equiv \frac{\mathcal{W}_{\max }}{\mathcal{W}_{\min }}-1
$$

where $\mathcal{W}=\left.\left(\partial_{w}\right)^{a}\left(\partial_{w}\right)_{a}\right|_{\mathcal{H}}$.

- For small $A_{0}, \varpi \propto A_{0}$ - broken translational invariance $\forall_{A_{0} \neq 0}$!!!
- We repeated this calculation for several values of k_{0}, and find similar results.

Einstein's equations chose a resummation that renders the IR floppy - broken translational invariance.

Emergent picture:

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to $T=0$, which was not covered by their analysis.

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to $T=0$, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to $T=0$, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

Results:

- Recall $A_{t}(x, 0)=\alpha \cos \left(k_{L} x\right)$.

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to $T=0$, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

Results:

- Recall $A_{t}(x, 0)=\alpha \cos \left(k_{L} x\right)$.
- 1D moduli space: $\tilde{\alpha} \equiv \alpha / k_{L}$.

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to $T=0$, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

Results:

- Recall $A_{t}(x, 0)=\alpha \cos \left(k_{L} x\right)$.
- 1D moduli space: $\tilde{\alpha} \equiv \alpha / k_{L}$.
- IR does not break ∂_{x}.

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to $T=0$, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

Results:

- Recall $A_{t}(x, 0)=\alpha \cos \left(k_{L} x\right)$.
- 1D moduli space: $\tilde{\alpha} \equiv \alpha / k_{L}$.
- IR does not break ∂_{x}.
- Good agreement between numerics and analytic results: $10^{\text {th }}$ order.

Periodic potentials in AdS_{4}

- Having seen the results in AdS_{2}, one might wonder whether the same happens in AdS_{4} for which $\bar{\mu}=0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to $T=0$, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

Results:

- Recall $A_{t}(x, 0)=\alpha \cos \left(k_{L} x\right)$.
- 1D moduli space: $\tilde{\alpha} \equiv \alpha / k_{L}$.
- IR does not break ∂_{x}.
- Good agreement between numerics and analytic results: $10^{\text {th }}$ order.
- No phase transition up to $\tilde{\alpha} \sim 6$.

Disorder in AdS_{4} :

- One periodic source does not do, what about many?

Disorder in AdS_{4} :

- One periodic source does not do, what about many?

$$
\Phi_{s}(x, w, 0)=2 \bar{V} \sum_{i=1}^{N_{x}-1} \sum_{j=1}^{N_{w}-1} A_{i} B_{j} \cos \left[k(i) x+\gamma_{i}\right] \cos \left[q(j) w+\lambda_{j}\right]
$$

Disorder in AdS_{4} :

- One periodic source does not do, what about many?

$$
\Phi_{s}(x, w, 0)=2 \bar{V} \sum_{i=1}^{N_{x}-1} \sum_{j=1}^{N_{w}-1} A_{i} B_{j} \cos \left[k(i) x+\gamma_{i}\right] \cos \left[q(j) w+\lambda_{j}\right]
$$

where γ_{i} and λ_{j} are random phases, and Φ_{s} is the source for operator of $\Delta_{+}=2$.

Disorder in AdS_{4} :

- One periodic source does not do, what about many?

$$
\Phi_{s}(x, w, 0)=2 \bar{V} \sum_{i=1}^{N_{x}-1} \sum_{j=1}^{N_{w}-1} A_{i} B_{j} \cos \left[k(i) x+\gamma_{i}\right] \cos \left[q(j) w+\lambda_{j}\right]
$$

where γ_{i} and λ_{j} are random phases, and Φ_{s} is the source for operator of $\Delta_{+}=2$.

- Averaged quantities are defined as:

$$
\langle f\rangle_{R} \equiv \lim _{N_{w} \rightarrow+\infty} \lim _{x \rightarrow+\infty} \prod_{i=1}^{N_{x}-1} \int_{0}^{2 \pi} \frac{\mathrm{~d} \gamma_{i}}{2 \pi} \prod_{j=1}^{N_{w}-1} \int_{0}^{2 \pi} \frac{\mathrm{~d} \delta_{j}}{2 \pi} f .
$$

Disorder in AdS_{4} :

- One periodic source does not do, what about many?

$$
\Phi_{s}(x, w, 0)=2 \bar{V} \sum_{i=1}^{N_{x}-1} \sum_{j=1}^{N_{w}-1} A_{i} B_{j} \cos \left[k(i) x+\gamma_{i}\right] \cos \left[q(j) w+\lambda_{j}\right]
$$

where γ_{i} and λ_{j} are random phases, and Φ_{s} is the source for operator of $\Delta_{+}=2$.

- Averaged quantities are defined as:

$$
\langle f\rangle_{R} \equiv \lim _{N_{w} \rightarrow+\infty} \lim _{N_{x} \rightarrow+\infty} \prod_{i=1}^{N_{x}-1} \int_{0}^{2 \pi} \frac{\mathrm{~d} \gamma_{i}}{2 \pi} \prod_{j=1}^{N_{w}-1} \int_{0}^{2 \pi} \frac{\mathrm{~d} \delta_{j}}{2 \pi} f .
$$

- If we are interested in isotropic local Gaussian disorder:

$$
N=N_{x}=N_{w}, \quad A_{i}=B_{j}=\sqrt{\frac{k_{0}}{N}} \quad \text { and } \quad k(\xi)=q(\xi)=\xi \frac{\pi k_{0}}{N} .
$$

Disorder in AdS_{4} :

- One periodic source does not do, what about many?

$$
\Phi_{s}(x, w, 0)=2 \bar{V} \sum_{i=1}^{N_{x}-1} \sum_{j=1}^{N_{w}-1} A_{i} B_{j} \cos \left[k(i) x+\gamma_{i}\right] \cos \left[q(j) w+\lambda_{j}\right]
$$

where γ_{i} and λ_{j} are random phases, and Φ_{s} is the source for operator of $\Delta_{+}=2$.

- Averaged quantities are defined as:

$$
\langle f\rangle_{R} \equiv \lim _{N_{w} \rightarrow+\infty} \lim _{N_{x} \rightarrow+\infty} \prod_{i=1}^{N_{x}-1} \int_{0}^{2 \pi} \frac{\mathrm{~d} \gamma_{i}}{2 \pi} \prod_{j=1}^{N_{w}-1} \int_{0}^{2 \pi} \frac{\mathrm{~d} \delta_{j}}{2 \pi} f .
$$

- If we are interested in isotropic local Gaussian disorder:

$$
N=N_{x}=N_{w}, \quad A_{i}=B_{j}=\sqrt{\frac{k_{0}}{N}} \quad \text { and } \quad k(\xi)=q(\xi)=\xi \frac{\pi k_{0}}{N},
$$

in which case:

$$
\langle\Phi\rangle_{R}=0, \quad \text { and } \quad\left\langle\Phi_{s}(x, w, 0) \Phi_{s}(s, h, 0)\right\rangle_{R}=\bar{V}^{2} \delta(x-s) \delta(w-h) .
$$

Results:

- Example of a fully 3D backreacted run.

Results:

- Example of a fully 3D backreacted run.
- Contour plot of Φ.

Results:

- Example of a fully 3D backreacted run.
- Contour plot of Φ.
- Common questions:

Results:

- Example of a fully 3D backreacted run.
- Contour plot of Φ.
- Common questions:
- Since the pointwise value of $|\Phi|$ grows likes \sqrt{N}, why don't you form black holes bound states?

Results:

- Example of a fully 3D backreacted run.
- Contour plot of Φ.
- Common questions:
- Since the pointwise value of $|\Phi|$ grows likes \sqrt{N}, why don't you form black holes bound states?
- Is the boundary data regular enough for this problem to be well posed, as $N \rightarrow+\infty$?

Results:

- Example of a fully 3D backreacted run.
- Contour plot of Φ.
- Common questions:
- Since the pointwise value of $|\Phi|$ grows likes \sqrt{N}, why don't you form black holes bound states?
- Is the boundary data regular enough for this problem to be well posed, as $N \rightarrow+\infty$?

$\left\langle g_{a b}\right\rangle_{R}$ is accurately described by a Lifshitz geometry:

$$
\left\langle\mathrm{d} s^{2}\right\rangle_{R}=\frac{L^{2}}{y^{2}}\left[-\frac{\mathrm{d} t^{2}}{y^{2(\bar{z}-1)}}+\mathrm{d} x^{2}+\mathrm{d} w^{2}+\mathrm{d} y^{2}\right]
$$

Conclusions:

- Numerical evidence that $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ is RG unstable.
- Instability does not affect AdS_{4}.
- Disorder potentials affect AdS_{4}.

Conclusions:

- Numerical evidence that $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ is RG unstable.
- Instability does not affect AdS_{4}.
- Disorder potentials affect AdS_{4}.

What to ask me after the talk:

- What about more general deformations?
- Is there a full function of two variables worth of deformations?
- What are the implications of this IR to transport?

Conclusions:

- Numerical evidence that $\mathrm{AdS}_{2} \times \mathbb{R}^{2}$ is RG unstable.
- Instability does not affect AdS_{4}.
- Disorder potentials affect AdS_{4}.

What to ask me after the talk:

- What about more general deformations?
- Is there a full function of two variables worth of deformations?
- What are the implications of this IR to transport?

Outlook:

- Can these new IR geometries affect time dependence?
- Can we make a connection with glassy physics?
- . .

