Cold planar horizons are floppy

Jorge E. Santos New frontiers in dynamical gravity

In collaboration with Sean A. Hartnoll - arXiv:1402.0872 and arXiv:1403.4612

• The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of T = 0 quantum matter.

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of T = 0 quantum matter.
- Extensive classification exists for translational invariant systems.

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of T = 0 quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of T = 0 quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

What this talk is *not*:

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of T = 0 quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

What this talk is *not*:

• ∂_x is broken explicitly in all matter sectors.

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of T = 0 quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

What this talk is *not*:

- ∂_x is broken explicitly in all matter sectors.
- For other setups recall Jerome's talk.

- The AdS/CFT correspondence maps asymptotically AdS solutions of Einsteins' equations to states of a dual conformal field theory.
- Near horizon geometries of AdS black holes describe the low energy dissipative dynamics of strongly interacting QFTs.
- Near horizon geometries of extremal planar black holes capture the dissipative dynamics of novel phases of T = 0 quantum matter.
- Extensive classification exists for translational invariant systems.
- A more realistic model needs to account for a ubiquitous property of CMT systems: breaking translational invariance.

What this talk is *not*:

- ∂_x is broken explicitly in all matter sectors.
- For other setups recall Jerome's talk.
- What I am going to describe doesn't happen in such setups.

- 2 Breakdown of Perturbation theory
- 3 Zero Temperature Numerics
- 4 Results
- **5** What about AdS₄?
- 6 Conclusion & Outlook

$$S = \frac{1}{16\pi G_d} \int \mathrm{d}^d x \sqrt{-g} \left[R + \frac{(d-1)(d-2)}{L^2} - \frac{1}{2} F^{ab} F_{ab} \right] \,,$$

where F = dA and L is the AdS_d length scale.

$$S = \frac{1}{16\pi G_d} \int {\rm d}^d x \, \sqrt{-g} \left[R + \frac{(d-1)(d-2)}{L^2} - \frac{1}{2} F^{ab} F_{ab} \right] \, , \label{eq:S}$$

where F = dA and L is the AdS_d length scale.

Comments:

$$S = \frac{1}{16\pi G_d} \int \mathrm{d}^d x \sqrt{-g} \left[\frac{R}{L^2} + \frac{(d-1)(d-2)}{L^2} - \frac{1}{2} F^{ab} F_{ab} \right] \,,$$

where F = dA and L is the AdS_d length scale.

Comments:

• Field content: gravity and Maxwell field

$$S = \frac{1}{16\pi G_d} \int \mathrm{d}^d x \sqrt{-g} \left[\frac{R}{L^2} + \frac{(d-1)(d-2)}{L^2} - \frac{1}{2} F^{ab} F_{ab} \right] \,,$$

where F = dA and L is the AdS_d length scale.

Comments:

- Field content: gravity and Maxwell field
- Consider solutions in the Poincaré patch with fixed boundary metric

 $\mathrm{d}s_{\partial}^2 = -\mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}\mathbf{w}^2$

$$S = \frac{1}{16\pi G_d} \int d^d x \sqrt{-g} \left[\frac{R + \frac{(d-1)(d-2)}{L^2} - \frac{1}{2} F^{ab} F_{ab} \right] \,,$$

where F = dA and L is the AdS_d length scale.

Comments:

- Field content: gravity and Maxwell field
- Consider solutions in the Poincaré patch with fixed boundary metric

$$\mathrm{d}s_{\partial}^2 = -\mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}\mathbf{w}^2$$

• Translational invariance is explicitly broken via the boundary behaviour of A_t :

$$A_t(x, \mathbf{w}, y) = \mu(x, \mathbf{w}) + \langle \rho(x, \mathbf{w}) \rangle y + \dots$$

$$S = \frac{1}{16\pi G_d} \int d^d x \sqrt{-g} \left[\frac{R}{L^2} + \frac{(d-1)(d-2)}{L^2} - \frac{1}{2} F^{ab} F_{ab} \right] \,,$$

where F = dA and L is the AdS_d length scale.

Comments:

- Field content: gravity and Maxwell field
- Consider solutions in the Poincaré patch with fixed boundary metric

$$\mathrm{d}s_{\partial}^2 = -\mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}\mathbf{w}^2$$

• Translational invariance is explicitly broken via the boundary behaviour of A_t :

$$A_t(x, \mathbf{w}, y) = \mu(x, \mathbf{w}) + \langle \rho(x, \mathbf{w}) \rangle y + \dots$$

• Focus on d = 4, with $\mu(x) = \overline{\mu} [1 + A_0 \cos(k_L x)]$.

$$S = \frac{1}{16\pi G_d} \int \mathrm{d}^d x \sqrt{-g} \left[\frac{R + \frac{(d-1)(d-2)}{L^2} - \frac{1}{2} F^{ab} F_{ab}}{L^2} \right] \,,$$

where F = dA and L is the AdS_d length scale.

Comments:

- Field content: gravity and Maxwell field
- Consider solutions in the Poincaré patch with fixed boundary metric

$$\mathrm{d}s_{\partial}^2 = -\mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}\mathbf{w}^2$$

• Translational invariance is explicitly broken via the boundary behaviour of A_t :

$$A_t(x, \mathbf{w}, y) = \mu(x, \mathbf{w}) + \langle \rho(x, \mathbf{w}) \rangle y + \dots$$

- Focus on d = 4, with $\mu(x) = \overline{\mu} \left[1 + A_0 \cos(k_L x) \right]$.
- Moduli space space of solutions is 2D: A_0 and $k_0 \equiv k_L/\bar{\mu}$.

• Study time independent perturbations of extremal RN:

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-G(y)(1-y)^{2}dt^{2} + \frac{dy^{2}}{G(y)(1-y)^{2}} + dx^{2} + dw^{2} \right],$$
$$A = L\sqrt{6}(1-y)dt,$$

with $G(y) = 1 + 2y + 3y^2$ and $\delta A_t(0, x) = L\sqrt{6} A_0 \cos(k_L x)$.

• Study time independent perturbations of extremal RN:

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-G(y)(1-y)^{2}dt^{2} + \frac{dy^{2}}{G(y)(1-y)^{2}} + dx^{2} + dw^{2} \right],$$
$$A = L\sqrt{6} (1-y)dt,$$

with $G(y) = 1 + 2y + 3y^2$ and $\delta A_t(0, x) = L\sqrt{6} A_0 \cos(k_L x)$.

• Possible to do analytically, but not illuminating.

• Study time independent perturbations of extremal RN:

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-G(y)(1-y)^{2}dt^{2} + \frac{dy^{2}}{G(y)(1-y)^{2}} + dx^{2} + dw^{2} \right],$$
$$A = L\sqrt{6} (1-y)dt,$$

with $G(y) = 1 + 2y + 3y^2$ and $\delta A_t(0, x) = L\sqrt{6} A_0 \cos(k_L x)$.

- Possible to do analytically, but not illuminating.
- Instead, take near horizon limit:

$$t = \tau/\varepsilon$$
, $y = 1 - \varepsilon \rho/6$ with $\varepsilon \to 0$.

• Study time independent perturbations of extremal RN:

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-G(y)(1-y)^{2}dt^{2} + \frac{dy^{2}}{G(y)(1-y)^{2}} + dx^{2} + dw^{2} \right],$$
$$A = L\sqrt{6} (1-y)dt,$$
(1)

with $G(y) = 1 + 2y + 3y^2$ and $\delta A_t(0, x) = L\sqrt{6}A_0\cos(k_L x)$.

- Possible to do analytically, but not illuminating.
- Instead, take near horizon limit:

$$t=\tau/\varepsilon\,,\quad y=1-\varepsilon\rho/6\quad\text{with}\quad \varepsilon\to 0.$$

• Brings line element (1) to

$$\begin{split} \mathrm{d}s^2 &= L^2 \left[\frac{1}{6} \left(-\rho^2 \mathrm{d}\tau^2 + \frac{\mathrm{d}\rho^2}{\rho^2} \right) + \mathrm{d}x^2 + \mathrm{d}w^2 \right] \,, \\ A &= \frac{L\,\rho}{\sqrt{6}} \mathrm{d}\tau \,. \end{split}$$

Study finite size time independent perturbations about pure $AdS_2 \times \mathbb{R}^2$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

Study finite size time independent perturbations about pure $AdS_2 \times \mathbb{R}^2$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

• Start with $AdS_2 \times \mathbb{R}^2$ written in Poincaré-like coordinates

$$\mathrm{d}s^2 = L_2^2 \left(-\rho^2 \mathrm{d}\tau^2 + \frac{\mathrm{d}\rho^2}{\rho^2} \right) + L^2 \mathrm{d}x^2 + L^2 \mathrm{d}w^2 \quad \text{and} \quad A = L_2 \, \rho \, \mathrm{d}\tau \, .$$

Study finite size time independent perturbations about pure $AdS_2 \times \mathbb{R}^2$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

• Start with $AdS_2 \times \mathbb{R}^2$ written in Poincaré-like coordinates

$$\mathrm{d}s^2 = L_2^2 \left(-\rho^2 \mathrm{d}\tau^2 + \frac{\mathrm{d}\rho^2}{\rho^2} \right) + L^2 \mathrm{d}x^2 + L^2 \mathrm{d}w^2 \quad \text{and} \quad A = L_2 \, \rho \, \mathrm{d}\tau \,,$$

where $L_2 \equiv L/\sqrt{6}$, and $\rho = 0$ is the horizon location.

Study finite size time independent perturbations about pure $AdS_2 \times \mathbb{R}^2$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

• Start with $AdS_2 \times \mathbb{R}^2$ written in Poincaré-like coordinates

$$\mathrm{d}s^2 = \frac{L_2^2}{\left(-\rho^2 \mathrm{d}\tau^2 + \frac{\mathrm{d}\rho^2}{\rho^2}\right)} + L^2 \mathrm{d}x^2 + L^2 \mathrm{d}w^2 \quad \text{and} \quad A = \frac{L_2}{\rho} \,\mathrm{d}\tau \,,$$

where $L_2 \equiv L/\sqrt{6}$, and $\rho = 0$ is the horizon location.

• Solve for the Kodama-Ishibashi variable:

$$\begin{split} \Phi^{(1)}_{-}(\rho,x) &= \tilde{\gamma}\cos(k_L x)\rho^{\nu_{-}(k_L)} \quad \text{where} \\ \nu_{-}(k_L) &= \sqrt{\left(\frac{1}{2} - \sqrt{\frac{k_L^2}{3} + 1}\right)^2 - \frac{k_L^2}{6}} - \frac{1}{2} > 0 \end{split}$$

Study finite size time independent perturbations about pure $AdS_2 \times \mathbb{R}^2$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

• Start with $AdS_2 \times \mathbb{R}^2$ written in Poincaré-like coordinates

$$\mathrm{d}s^2 = \frac{L_2^2}{\left(-\rho^2 \mathrm{d}\tau^2 + \frac{\mathrm{d}\rho^2}{\rho^2}\right)} + L^2 \mathrm{d}x^2 + L^2 \mathrm{d}w^2 \quad \text{and} \quad A = \frac{L_2}{\rho} \,\mathrm{d}\tau \,,$$

where $L_2 \equiv L/\sqrt{6}$, and $\rho = 0$ is the horizon location.

• Solve for the Kodama-Ishibashi variable:

$$\Phi_{-}^{(1)}(\rho, x) = \tilde{\gamma} \cos(k_L x) \rho^{\nu_{-}(k_L)}$$

• Third order Kodama-Ishibashi variable grows faster than first order:

$$\Phi_{-}^{(3)}(\rho, x) = \ldots + \tilde{\beta}(\nu_{-}) \,\delta L_2 \,\rho^{\nu_{-}(k_L)} \log \rho \,\cos(k_L x) + \ldots$$

Study finite size time independent perturbations about pure $AdS_2 \times \mathbb{R}^2$ - if a breakdown occurs, likely to be universal, since it only depends on near horizon geometry.

 $\bullet\,$ Start with $\mathsf{AdS}_2\times\mathbb{R}^2$ written in Poincaré-like coordinates

$$\mathrm{d}s^2 = \frac{L_2^2}{\left(-\rho^2\mathrm{d}\tau^2 + \frac{\mathrm{d}\rho^2}{\rho^2}\right)} + L^2\mathrm{d}x^2 + L^2\mathrm{d}w^2 \quad \text{and} \quad A = \frac{L_2}{\rho}\,\mathrm{d}\tau\,,$$

where $L_2 \equiv L/\sqrt{6}$, and $\rho = 0$ is the horizon location.

• Solve for the Kodama-Ishibashi variable:

$$\Phi_{-}^{(1)}(\rho, x) = \tilde{\gamma} \cos(k_L x) \rho^{\nu_{-}(k_L)}$$

• Third order Kodama-Ishibashi variable grows faster than first order:

$$\Phi_{-}^{(3)}(\rho, x) = \dots + \tilde{\beta}(\nu_{-}) \,\delta L_2 \,\rho^{\nu_{-}(k_L)} \log \rho \,\cos(k_L x) + \dots$$

Breakdown of perturbation theory - resumm perturbation theory.

Preserving $AdS_2 \times \mathbb{R}^2$:

Preserving $AdS_2 \times \mathbb{R}^2$:

• Promote ν_{-} to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the \log .

Preserving $AdS_2 \times \mathbb{R}^2$:

- Promote ν_- to be a function of $\tilde{\gamma}^2,$ in such a way that the expansion cancels the $\log.$
- Similar to the construction of Geons where ω is promoted to be a function of $\varepsilon.$

Preserving $AdS_2 \times \mathbb{R}^2$:

- Promote ν_{-} to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the \log .
- Similar to the construction of Geons where ω is promoted to be a function of ε .
- For $k_L \ll 1$, ν_- dangerously approaches 0 as k_L^4 exponent might become negative \Rightarrow lattice relevant in IR.

Preserving $AdS_2 \times \mathbb{R}^2$:

- Promote ν_- to be a function of $\tilde{\gamma}^2,$ in such a way that the expansion cancels the $\log.$
- Similar to the construction of Geons where ω is promoted to be a function of ε .
- For k_L ≪ 1, ν_− dangerously approaches 0 as k⁴_L exponent might become negative ⇒ lattice relevant in IR.

Destroying $AdS_2 \times \mathbb{R}^2$:

Preserving $AdS_2 \times \mathbb{R}^2$:

- Promote ν_{-} to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the \log .
- Similar to the construction of Geons where ω is promoted to be a function of $\varepsilon.$
- For $k_L \ll 1$, ν_- dangerously approaches 0 as k_L^4 exponent might become negative \Rightarrow lattice relevant in IR.

Destroying $AdS_2 \times \mathbb{R}^2$:

• Add the following third order term:

 $\eta(\nu_{-})\rho^{\nu_{-}}x\sin(k_{L}x)\,.$

Preserving $AdS_2 \times \mathbb{R}^2$:

- Promote ν_{-} to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the \log .
- Similar to the construction of Geons where ω is promoted to be a function of ε .
- For $k_L \ll 1$, ν_- dangerously approaches 0 as k_L^4 exponent might become negative \Rightarrow lattice relevant in IR.

Destroying $AdS_2 \times \mathbb{R}^2$:

• Add the following third order term:

 $\eta(\nu_-)\rho^{\nu_-}x\sin(k_Lx)\,,$

where $\eta(\nu_{-})$ can be chosen to cancel the diverging log.
A tale of two resummations:

Preserving $AdS_2 \times \mathbb{R}^2$:

- Promote ν_{-} to be a function of $\tilde{\gamma}^{2}$, in such a way that the expansion cancels the \log .
- Similar to the construction of Geons where ω is promoted to be a function of ε .
- For $k_L \ll 1$, ν_- dangerously approaches 0 as k_L^4 exponent might become negative \Rightarrow lattice relevant in IR.

Destroying $AdS_2 \times \mathbb{R}^2$:

• Add the following third order term:

$$\eta(\nu_{-})\rho^{\nu_{-}}\boldsymbol{x}\sin(k_{L}\boldsymbol{x})\,.$$

• Close to x = 0, perturbation theory is saved, however away from x = 0 perturbation theory breaks down!

Breakdown of Perturbation theory

How to decide which is which?

Proceed without any approximation - Numerics.

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-(1-y)^{2} G(y) A dt^{2} + \frac{B}{(1-y)^{2} G(y)} (dy + F dx)^{2} + S_{1} dx^{2} + S_{2} dw^{2} \right]$$
$$A = L \sqrt{6} (1-y) P dt.$$

where $G(y) = 1 + 2y + 3y^2$. For $A = B = S_1 = S_2 = P = 1$ and F = 0 it reduces to extreme RN black hole.

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-(1-y)^{2} G(y) A dt^{2} + \frac{B}{(1-y)^{2} G(y)} (dy + F dx)^{2} + S_{1} dx^{2} + S_{2} dw^{2} \right]$$
$$A = L \sqrt{6} (1-y) P dt.$$

where $G(y) = 1 + 2y + 3y^2$. For $A = B = S_1 = S_2 = P = 1$ and F = 0 it reduces to extreme RN black hole.

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-(1-y)^{2} G(y) A dt^{2} + \frac{B}{(1-y)^{2} G(y)} (dy + F dx)^{2} + S_{1} dx^{2} + S_{2} dw^{2} \right]$$
$$A = L \sqrt{6} (1-y) P dt.$$

where $G(y) = 1 + 2y + 3y^2$. For $A = B = S_1 = S_2 = P = 1$ and F = 0 it reduces to extreme RN black hole.

Comments:

• Small irrational powers - $(1-y)^{\nu_-(k_L)}$ - $\nu_-(1) \approx 0.012$.

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-(1-y)^{2} G(y) A dt^{2} + \frac{B}{(1-y)^{2} G(y)} (dy + F dx)^{2} + S_{1} dx^{2} + S_{2} dw^{2} \right]$$
$$A = L \sqrt{6} (1-y) P dt.$$

where $G(y) = 1 + 2y + 3y^2$. For $A = B = S_1 = S_2 = P = 1$ and F = 0 it reduces to extreme RN black hole.

- Small irrational powers $(1-y)^{\nu_-(k_L)}$ $\nu_-(1) \approx 0.012$.
- \bullet Use finite difference patch near ${\cal H}$ and spectral collocation.

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-(1-y)^{2} G(y) A dt^{2} + \frac{B}{(1-y)^{2} G(y)} (dy + F dx)^{2} + S_{1} dx^{2} + S_{2} dw^{2} \right]$$
$$A = L \sqrt{6} (1-y) P dt.$$

where $G(y) = 1 + 2y + 3y^2$. For $A = B = S_1 = S_2 = P = 1$ and F = 0 it reduces to extreme RN black hole.

- Small irrational powers $(1-y)^{\nu_-(k_L)}$ $\nu_-(1) \approx 0.012$.
- \bullet Use finite difference patch near ${\cal H}$ and spectral collocation.
- Very steep gradients need to use adaptive mesh refinement in finite difference patch.

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-(1-y)^{2} G(y) A dt^{2} + \frac{B}{(1-y)^{2} G(y)} (dy + F dx)^{2} + S_{1} dx^{2} + S_{2} dw^{2} \right]$$
$$A = L \sqrt{6} (1-y) P dt.$$

where $G(y) = 1 + 2y + 3y^2$. For $A = B = S_1 = S_2 = P = 1$ and F = 0 it reduces to extreme RN black hole.

- Small irrational powers $(1-y)^{\nu_-(k_L)}$ $\nu_-(1) \approx 0.012$.
- \bullet Use finite difference patch near ${\cal H}$ and spectral collocation.
- Very steep gradients need to use adaptive mesh refinement in finite difference patch.
- Use De-Turck method thank you Toby!

Most general line element, without any gauge choice, and compatible with our symmetries takes the following form

$$ds^{2} = \frac{L^{2}}{y^{2}} \left[-(1-y)^{2} G(y) A dt^{2} + \frac{B}{(1-y)^{2} G(y)} (dy + F dx)^{2} + S_{1} dx^{2} + S_{2} dw^{2} \right]$$
$$A = L \sqrt{6} (1-y) P dt.$$

where $G(y) = 1 + 2y + 3y^2$. For $A = B = S_1 = S_2 = P = 1$ and F = 0 it reduces to extreme RN black hole.

- Small irrational powers $(1-y)^{\nu_-(k_L)}$ $\nu_-(1) \approx 0.012$.
- \bullet Use finite difference patch near ${\cal H}$ and spectral collocation.
- Very steep gradients need to use adaptive mesh refinement in finite difference patch.
- Use De-Turck method thank you Toby!
- Alternatively, use very, very small $T/\bar{\mu}$.

• To measure deviations from $AdS_2 \times \mathbb{R}^2$:

$$arpi \equiv rac{\mathcal{W}_{\max}}{\mathcal{W}_{\min}} - 1 \,,$$

where $\mathcal{W} = (\partial_w)^a (\partial_w)_a |_{\mathcal{H}}$.

• To measure deviations from
$$AdS_2 imes \mathbb{R}^2$$

 $arpi \equiv rac{\mathcal{W}_{\max}}{\mathcal{W}_{\min}} - 1$,

where $\mathcal{W} = (\partial_w)^a (\partial_w)_a |_{\mathcal{H}}$.

- For small A_0 , $\varpi \propto A_0$ broken translational invariance $\forall_{A_0 \neq 0} !!!$
- We repeated this calculation for several values of k_0 , and find similar results.

• We repeated this calculation for several values of k_0 , and find similar results.

Einstein's equations chose a resummation that renders the IR floppy - broken translational invariance.

Periodic potentials in AdS_4

• Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.

- Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.

- Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to T = 0, which was not covered by their analysis.

- Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to T = 0, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

- Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to T = 0, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

• Recall
$$A_t(x,0) = \alpha \cos(k_L x)$$
.

- Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to T = 0, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

- Recall $A_t(x,0) = \alpha \cos(k_L x)$.
- 1D moduli space: $\tilde{\alpha} \equiv \alpha/k_L$.

- Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to T = 0, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

- Recall $A_t(x,0) = \alpha \cos(k_L x)$.
- 1D moduli space: $\tilde{\alpha} \equiv \alpha/k_L$.
- IR does not break ∂_x .

- Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to T = 0, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

- Having seen the results in AdS₂, one might wonder whether the same happens in AdS₄ for which $\bar{\mu} = 0$.
- The $T \neq 0$ case was considered first by Chesler, Lucas and Sachdev.
- We will restrict to T = 0, which was not covered by their analysis.
- Can be done in an analytic perturbative expansion (valid for small lattice amplitude) and numerically, for any lattice amplitude.

• One periodic source does not do, what about many?

• One periodic source does not do, what about many?

$$\Phi_s(x, w, 0) = 2\bar{V} \sum_{i=1}^{N_x - 1} \sum_{j=1}^{N_w - 1} A_i B_j \cos[k(i) x + \gamma_i] \cos[q(j) w + \lambda_j],$$

• One periodic source does not do, what about many?

$$\Phi_s(x, w, 0) = 2\bar{V} \sum_{i=1}^{N_x - 1} \sum_{j=1}^{N_w - 1} A_i B_j \cos[k(i) x + \gamma_i] \cos[q(j) w + \lambda_j],$$

where γ_i and λ_j are random phases, and Φ_s is the source for operator of $\Delta_+ = 2$.

• One periodic source does not do, what about many?

$$\Phi_s(x, w, 0) = 2\bar{V} \sum_{i=1}^{N_x - 1} \sum_{j=1}^{N_w - 1} A_i B_j \cos[k(i) x + \gamma_i] \cos[q(j) w + \lambda_j],$$

where γ_i and λ_j are random phases, and Φ_s is the source for operator of $\Delta_+ = 2$.

• Averaged quantities are defined as:

$$\langle f \rangle_R \equiv \lim_{N_w \to +\infty} \lim_{N_x \to +\infty} \prod_{i=1}^{N_x - 1} \int_0^{2\pi} \frac{\mathrm{d}\gamma_i}{2\pi} \prod_{j=1}^{N_w - 1} \int_0^{2\pi} \frac{\mathrm{d}\delta_j}{2\pi} f \, .$$

• One periodic source does not do, what about many?

$$\Phi_s(x, w, 0) = 2\bar{V} \sum_{i=1}^{N_x - 1} \sum_{j=1}^{N_w - 1} A_i B_j \cos[k(i) x + \gamma_i] \cos[q(j) w + \lambda_j],$$

where γ_i and λ_j are random phases, and Φ_s is the source for operator of $\Delta_+ = 2$.

• Averaged quantities are defined as:

$$\langle f \rangle_R \equiv \lim_{N_w \to +\infty} \lim_{N_x \to +\infty} \prod_{i=1}^{N_x - 1} \int_0^{2\pi} \frac{\mathrm{d}\gamma_i}{2\pi} \prod_{j=1}^{N_w - 1} \int_0^{2\pi} \frac{\mathrm{d}\delta_j}{2\pi} f.$$

• If we are interested in isotropic local Gaussian disorder:

$$N = N_x = N_w$$
, $A_i = B_j = \sqrt{\frac{k_0}{N}}$ and $k(\xi) = q(\xi) = \xi \frac{\pi k_0}{N}$

• One periodic source does not do, what about many?

$$\Phi_s(x, w, 0) = 2\bar{V} \sum_{i=1}^{N_x - 1} \sum_{j=1}^{N_w - 1} A_i B_j \cos[k(i) x + \gamma_i] \cos[q(j) w + \lambda_j],$$

where γ_i and λ_j are random phases, and Φ_s is the source for operator of $\Delta_+ = 2$.

• Averaged quantities are defined as:

$$\langle f \rangle_R \equiv \lim_{N_w \to +\infty} \lim_{N_x \to +\infty} \prod_{i=1}^{N_x - 1} \int_0^{2\pi} \frac{\mathrm{d}\gamma_i}{2\pi} \prod_{j=1}^{N_w - 1} \int_0^{2\pi} \frac{\mathrm{d}\delta_j}{2\pi} f.$$

• If we are interested in isotropic local Gaussian disorder:

$$N = N_x = N_w \,, \quad A_i = B_j = \sqrt{\frac{k_0}{N}} \quad \text{and} \quad k(\xi) = q(\xi) = \xi \frac{\pi \, k_0}{N} \,,$$

in which case:

$$\langle \Phi \rangle_R = 0 \,, \quad \text{and} \quad \langle \Phi_s(x,w,0) \Phi_s(s,h,0) \rangle_R = \bar{V}^2 \delta(x-s) \delta(w-h) \,.$$

• Example of a fully 3D backreacted run.

- Example of a fully 3D backreacted run.
 - $\bullet\,$ Contour plot of $\Phi.$

- Example of a fully 3D backreacted run.
 - $\bullet\,$ Contour plot of $\Phi.$
- Common questions:

- Example of a fully 3D backreacted run.
 - Contour plot of Φ .
- Common questions:
 - Since the pointwise value of $|\Phi|$ grows likes \sqrt{N} , why don't you form black holes bound states?

- Example of a fully 3D backreacted run.
 - Contour plot of Φ .
- Common questions:
 - Since the pointwise value of $|\Phi|$ grows likes \sqrt{N} , why don't you form black holes bound states?
 - Is the boundary data regular enough for this problem to be well posed, as $N \to +\infty$?

Results:

- Example of a fully 3D backreacted run.
 - Contour plot of Φ .
- Common questions:
 - Since the pointwise value of $|\Phi|$ grows likes \sqrt{N} , why don't you form black holes bound states?
 - Is the boundary data regular enough for this problem to be well posed, as $N \rightarrow +\infty$?

 $\langle g_{ab} \rangle_R$ is accurately described by a Lifshitz geometry:

$$\langle \mathrm{d}s^2 \rangle_R = \frac{L^2}{y^2} \left[-\frac{\mathrm{d}t^2}{y^{2(\bar{z}-1)}} + \mathrm{d}x^2 + \mathrm{d}w^2 + \mathrm{d}y^2 \right] \,.$$

Conclusions:

- Numerical evidence that $\mathsf{AdS}_2\times\mathbb{R}^2$ is RG unstable.
- Instability does not affect AdS₄.
- Disorder potentials affect AdS₄.

Conclusions:

- Numerical evidence that $\mathsf{AdS}_2\times \mathbb{R}^2$ is RG unstable.
- Instability does not affect AdS₄.
- Disorder potentials affect AdS₄.

What to ask me after the talk:

- What about more general deformations?
 - Is there a full function of two variables worth of deformations?
- What are the implications of this IR to transport?

Conclusions:

- Numerical evidence that $\mathsf{AdS}_2\times \mathbb{R}^2$ is RG unstable.
- Instability does not affect AdS₄.
- Disorder potentials affect AdS₄.

What to ask me after the talk:

- What about more general deformations?
 - Is there a full function of two variables worth of deformations?
- What are the implications of this IR to transport?

Outlook:

- Can these new IR geometries affect time dependence?
- Can we make a connection with glassy physics?
- . . .